Ефективна економіка. 2024. № 5.

DOI: http://doi.org/10.32702/2307-2105.2024.5.20
УДК 369.5(477):[004.8+339.923(4)]

V. Tokar,
Doctor of Economic Sciences, Professor, Professor of the Department of Software Engineering and Cybersecurity, State University of Trade and Economics
ORCID ID: https://orcid.org/0000-0002-1879-5855

B. Tishkov,
PhD in Economics, Associate Professor, Head of the Department of Information Systems in Economics, Kyiv National Economic University named after Vadym Hetman
ORCID ID: https://orcid.org/0000-0003-3381-9103

A. Lytvyniuk,
PhD Student of the Department of Information Systems in Economics, Kyiv National Economic University named after Vadym Hetman
ORCID ID: https://orcid.org/0009-0009-0507-1071

ARTIFICIAL INTELLIGENCE AND EUROPEAN INTEGRATION IN OPTIMIZING UKRAINE’S PENSION SYSTEM

В. В. Токар,
д. е. н, професор, професор кафедри інженерії програмного забезпечення та кібербезпеки, Державний торговельно-економічний університет
Б. О. Тішков,
к. е. н., доцент, завідувач кафедри інформаційних систем в економіці, Київський національний економічний університет імені Вадима Гетьмана
А. М. Литвинюк,
аспірант кафедри інформаційних систем в економіці, Київський національний економічний університет імені Вадима Гетьмана

ШТУЧНИЙ ІНТЕЛЕКТ ТА ЄВРОПЕЙСЬКА ІНТЕГРАЦІЯ В ОПТИМІЗАЦІЇ ПЕНСІЙНОЇ СИСТЕМИ УКРАЇНИ
The article investigates the potential of incorporating artificial intelligence (AI) into Ukraine’s pension system, with a focus on the country’s efforts to align with European standards. As Ukraine faces demographic challenges, economic instability, and bureaucratic inefficiencies, the research explores how AI could enhance pension calculations, reduce administrative costs, and improve service delivery. The main goal is to evaluate the effective implementation of AI technologies within the EU regulatory framework, aligning with Ukraine’s aspirations for EU integration. The study employs a SWOT analysis to assess the strengths, weaknesses, opportunities, and threats of implementing AI to optimize Ukraine’s pension system.

The research identifies significant potential for AI to streamline Ukraine’s pension system through automation and improved data management, which could lead to enhanced accuracy in pension distribution and operational efficiencies. However, the findings also highlight the critical need for substantial investments in technological infrastructure and the development of robust legal frameworks to support AI integration. The study acknowledges limitations, including the availability of current and comprehensive data, resistance to technological change among the population, and the high initial costs associated with AI implementation.

The practical applications of this research are manifold; policymakers can leverage AI to make data-driven decisions that enhance the reliability and efficiency of the pension system. Additionally, the insights gained from this study could guide the development of policies that align with both national needs and European standards. This study contributes to the field by providing a context-specific examination of AI in the public sector, particularly within the framework of European integration. Unlike previous studies that have focused on the potential of AI, this article analyzes the role of AI in optimizing Ukraine’s pension system within the context of its European integration development vector. Promising areas for future research include strategic public-private partnerships and hybrid methods for financing transformations in the Ukrainian pension system.

У статті досліджено потенціал впровадження штучного інтелекту (ШІ) в українську пенсійну систему через призму зусиль, спрямованих на наближення до європейських стандартів. Оскільки Україна стикається з демографічними викликами, економічною нестабільністю та бюрократичною неефективністю, у дослідженні визначено, як ШІ може покращити пенсійні
розрахунки, зменшити адміністративні витрати та покращити надання послуг. Основна мета статті полягає в оцінюванні ефективності впровадження технологій штучного інтелекту в рамках нормативно-правової бази ЄС, що відповідає прагненню України до інтеграції в ЄС. У дослідженні використовується SWOT-аналіз для оцінки сильних і слабких сторін, можливостей і загроз впровадження штучного інтелекту для оптимізації пенсійної системи України.

Дослідження виявило значний потенціал ШІ для оптимізації пенсійної системи України завдяки автоматизації та покращенню управління даними, що може призвести до підвищення точності розподілу пенсій та операційної ефективності. Однак результати дослідження також підкреслюють гостру потребу в значних інвестиціях у технологічну інфраструктуру та розробку надійної нормативно-правової бази для підтримки інтеграції ШІ. Вказано, що викликами для імплементації ШІ в пенсійну систему України є: необхідність забезпечення актуальними та повними даними, опір технологічним змінам серед населення, а також високі початкові витрати, пов'язані з упровадженням ШІ.

Практичне значення дослідження полягає в можливості використання ШІ для прийняття рішень, які підвищують надійність та ефективність пенсійної системи. Крім того, висновки, отримані в результатах цього дослідження, можуть допомогти в розробці політики, яка відповідає як національним потребам, так і європейським стандартам. Це дослідження робить внесок у розвиток галузі, надаючи контекстно-специфічний аналіз штучного інтелекту в державному секторі, зокрема в рамках європейської інтеграції. На відміну від попередніх досліджень, які розглядають потенціал ШІ, ця стаття аналізує роль ШІ в оптимізації пенсійної системи України в контексті європінтеграційного вектору розвитку. Перспективними напрямами майбутніх досліджень є стратегічні державно-приватні партнерства та гібридні методи фінансування перетворень у пенсійній системі України.

Keywords: artificial intelligence (AI), European integration, pension system, social security system, Ukraine.

Ключові слова: штучний інтелект (ШІ), європейська інтеграція, пенсійна система, система соціального забезпечення, Україна.

General statement of the problem and its connection with important
The integration of artificial intelligence (AI) into government administration systems, such as pension systems, holds the promise of significant improvements in efficiency and effectiveness. This research focuses on optimizing Ukraine’s pension system through AI and European integration, given the country’s ongoing reforms and demographic challenges. Previous studies have demonstrated the potential of AI in enhancing social security systems across Europe, including improved administrative accuracy, policy planning, and beneficiary satisfaction.

Ukraine’s pension system has faced challenges due to an aging population, economic instability, and bureaucratic inefficiencies. This study aims to investigate how AI technologies can be effectively implemented to improve pension calculations, reduce administrative costs, and enhance service delivery in Ukraine, while aligning these solutions with European Union guidelines and regulations, which is crucial for Ukraine’s EU integration aspirations.

The research hypothesizes that AI, coupled with strategic European integration, can significantly optimize Ukraine’s pension system. It contributes to the academic discourse on AI in public administration and provides actionable insights for policymakers. The study’s novelty lies in its context-specific application of AI within the framework of European integration, offering a unique perspective on addressing systemic challenges in Ukraine’s pension system.

Analysis of recent studies and publications. The integration of Artificial Intelligence (AI) and European principles into Ukraine’s pension system represents a critical intersection of technology and policy that can potentially enhance the sustainability and efficiency of social security. The existing literature provides a comprehensive background for understanding the potential and challenges of optimizing Ukraine’s pension framework through technological and policy innovations.

Borschevska and Zasnov highlight the absence of specific legal frameworks as a critical barrier to AI’s full implementation in Ukraine’s judiciary [1, p. 115-116], underscoring the need for tailored regulations across sectors, including the pension system. Lebid, Kiporenko, and Vovk outline the transformative potential of AI technologies in agriculture [2, p. 67-68] but overlook the technical and infrastructural
readiness of Ukraine. Patsuriia’s examination of AI in national security and defense illustrates the dual-edged nature of AI, necessitating robust, transparent, and inclusive legislative and regulatory frameworks [3, p. 75-76].

Havryliuk et al. provide a foundational economic-mathematical model to determine the optimal structural allocation of pension funds in Ukraine, offering a novel algorithm to forecast and enhance financial distributions [4, p. 227-228]. However, the practical application of their model remains theoretical. Martseniuk explores the operational aspects of the Pension Fund of Ukraine and private pension funds, aiming to align Ukraine’s pension insurance practices with international standards [5, p. 202-203], but falls short in offering actionable strategies.

Zaiarnyi addresses the protection of individual rights in the context of AI utilization [6, p. 38-39], proposing specific improvements to protect information rights, while Kornieieva highlights the legal and human rights implications of AI deployment [7, p. 394], emphasizing the need for a robust legal framework. Li, Jiang, and Liu explore the practical applications of AI and wireless sensor networks in enhancing elderly care [8], though they overlook ethical and privacy concerns.

Zelenko examines the structural challenges and reform initiatives in EU and Ukrainian pension systems, underscoring the importance of pension system harmonization [9]. Parubets et al. propose enhanced state regulation, public-private partnerships, and digital infrastructure improvements to facilitate AI integration in Ukraine’s economic frameworks [10, p. 266]. Saadeldin et al. delve into AI-driven financial models for pension fund management, highlighting the Artificial Bee Colony Optimization Approach [11, p. 119-120], while Kozak advocates for adopting global best practices and integrating AI to achieve a more robust and interconnected pension system in Ukraine [12, p. 120].

Vovchak, Halkiv, Kulinich, and Zhayvoronok provide a foundational analysis of Ukraine’s pension challenges, focusing on financial imbalances in the Pension Fund of Ukraine and offering a critical perspective on revenue and expenditure dynamics [13, p. 373]. Zahidna and Sherementa discuss the three-tiered structure of the modern Ukrainian pension system [14, p. 22], emphasizing the necessity of addressing broader socio-economic issues and ensuring transparency. Parkhomenko-Kutsevil examines the pension reforms implemented in select EU countries in
response to demographic changes and economic pressures [15, p. 156-157], illustrating diverse approaches to maintaining pension system sustainability.

While the literature provides a solid foundation, significant gaps remain in the practical application of AI in the pension sector, the adaptation of European models to the Ukrainian context, and a balanced assessment of AI’s benefits and limitations.

Formulation of the objectives of the article (task statement). The objective is to provide a comprehensive understanding of the potential enhancements of Ukraine’s pension system through AI and EU integration, and to outline strategies for effectively overcoming the obstacles.

Summary of the main research material. Table 1 summarizes strengths and weaknesses of Ukraine’s pension system when considering the implementation of artificial intelligence (AI) to improve its efficiency. The analysis takes into account multiple factors such as the technological infrastructure available, socioeconomic conditions, and the existing regulatory framework. It evaluates how these different elements could impact the adoption of AI solutions to optimize the pension system’s operations.

On the technological front, limited infrastructure especially in rural areas could hinder nationwide deployment of AI solutions. However, Ukraine’s thriving IT sector with its innovative professionals and high mobile connectivity rates offer strengths to drive AI development and mobile access. Economically, the high costs of adopting AI pose a challenge given strained public budgets. But opportunities exist through international funding and partnerships with global tech firms. Socially, public skepticism around AI, data privacy concerns, and fears of job displacement need to be addressed through education and transparent communication.

The regulatory environment currently lacks robust laws governing ethical AI use and data protection – a notable weakness. But Ukraine’s strong AI research community can provide expertise to shape appropriate regulations aligning with social needs. To capitalize on strengths and mitigate weaknesses, a multi-pronged strategy is crucial. This includes upgrading technological infrastructure, fostering public-private collaborations, enhancing AI education and training, and developing a comprehensive legal framework on AI governance.
Table 1. Optimizing Ukraine’s pension system with AI:

<table>
<thead>
<tr>
<th>Weaknesses</th>
<th>Description</th>
<th>Strengths</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limited technological infrastructure</td>
<td>Many regions may lack the necessary hardware and broadband connectivity to support AI systems.</td>
<td>Government support for digitization</td>
<td>The Ukrainian government has shown commitment to digitizing public services, creating a supportive environment for AI implementation.</td>
</tr>
<tr>
<td>Data privacy concerns</td>
<td>There may be concerns about how personal data is handled, stored, and protected when using AI.</td>
<td>High mobile connectivity</td>
<td>With widespread mobile internet access, AI applications can be made accessible to a large segment of the population.</td>
</tr>
<tr>
<td>Insufficient data quality</td>
<td>Existing data might be outdated or inaccurate, hindering effective AI operation.</td>
<td>Progressive IT sector</td>
<td>Ukraine’s robust IT sector can provide technical expertise and innovation in AI development.</td>
</tr>
<tr>
<td>Skepticism towards AI</td>
<td>Public and institutional trust in AI solutions might be low, affecting adoption rates.</td>
<td>Young, tech-savvy population</td>
<td>A younger demographic is more likely to embrace new technologies, including AI.</td>
</tr>
<tr>
<td>High implementation costs</td>
<td>Initial costs for integrating AI technologies could be prohibitively high for public systems.</td>
<td>Educational institutions with AI focus</td>
<td>Universities and colleges are increasingly offering courses on AI and machine learning, building a knowledgeable workforce.</td>
</tr>
<tr>
<td>Regulatory challenges</td>
<td>Existing laws may not accommodate the new scenarios presented by AI, requiring time-consuming legislative updates.</td>
<td>Collaboration with international tech firms</td>
<td>Partnerships with global tech companies could facilitate knowledge transfer and technological upgrades.</td>
</tr>
<tr>
<td>Risk of automation bias</td>
<td>AI systems may perpetuate existing biases in data, leading to unfair treatment of some beneficiaries.</td>
<td>Strong research community</td>
<td>A vibrant academic and scientific community can contribute to AI research and ethical guidelines.</td>
</tr>
<tr>
<td>Cybersecurity risks</td>
<td>Increased use of AI could lead to new vulnerabilities in cybersecurity.</td>
<td>Existing social welfare programs</td>
<td>Well-established social programs can provide a foundation for integrating AI-driven enhancements.</td>
</tr>
<tr>
<td>Language and cultural barriers</td>
<td>Developing AI systems that accurately understand local languages and dialects can be challenging.</td>
<td>Government initiatives in AI</td>
<td>Specific government initiatives aimed at promoting AI could accelerate its adoption in public services.</td>
</tr>
<tr>
<td>Dependency on external technology</td>
<td>Heavy reliance on foreign AI technologies might affect national sovereignty over critical infrastructure.</td>
<td>Potential for international funding</td>
<td>Opportunities to secure funding from international bodies to support AI projects in public sectors like pensions.</td>
</tr>
</tbody>
</table>

Source: elaborated by authors.

Critically, AI pension solutions must be tailored to Ukraine’s cultural and linguistic context for broader acceptance. Customizing the technology is key to ensuring its effectiveness in streamlining pension management accessibly nationwide.
While significant challenges exist, Ukraine’s existing strengths provide a solid foundation to build upon through strategic investments in technology, robust policies, and stakeholder engagement. Overcoming the obstacles can unlock AI's potential in enhancing the efficiency and equity of Ukraine’s pension services.

Table 2 outlines the potential opportunities and threats linked with the integration of AI for enhancing Ukraine’s pension system.

Table 2. Optimizing Ukraine’s pension system with AI: Opportunities and Threats

<table>
<thead>
<tr>
<th>Opportunity</th>
<th>Description</th>
<th>Threat</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraud Reduction</td>
<td>AI can analyze patterns and detect anomalies to prevent fraud.</td>
<td>Privacy Risks</td>
<td>Increased data collection might lead to privacy breaches.</td>
</tr>
<tr>
<td>Improved Accuracy</td>
<td>AI algorithms can reduce human errors in pension calculations.</td>
<td>Job Displacement</td>
<td>Automation could displace administrative staff.</td>
</tr>
<tr>
<td>Faster Service</td>
<td>AI can speed up the processing of pension claims and inquiries.</td>
<td>Dependency on Technology</td>
<td>Over-reliance on AI systems can be problematic during outages.</td>
</tr>
<tr>
<td>Cost Efficiency</td>
<td>Reducing manual processes can lower operational costs.</td>
<td>High Initial Costs</td>
<td>Initial investment for AI technology and training can be significant.</td>
</tr>
<tr>
<td>Personalized Plans</td>
<td>AI can tailor pension plans based on individual financial situations and goals.</td>
<td>Ethical Concerns</td>
<td>Bias in AI algorithms could lead to unfair treatment of certain groups.</td>
</tr>
<tr>
<td>Enhanced Data Analysis</td>
<td>AI can utilize large datasets to improve pension fund management.</td>
<td>Data Mismanagement</td>
<td>Poor data handling might lead to errors in pension distribution.</td>
</tr>
<tr>
<td>Predictive Modeling</td>
<td>AI can forecast future pension trends and requirements.</td>
<td>Security Threats</td>
<td>AI systems can be targets for cyberattacks, risking sensitive data.</td>
</tr>
<tr>
<td>Better Reporting</td>
<td>AI enables more accurate and detailed reporting for regulatory compliance.</td>
<td>Resistance to Change</td>
<td>Cultural resistance from staff and clients towards new technologies.</td>
</tr>
<tr>
<td>Resource Allocation</td>
<td>AI helps in optimizing resource allocation for pension fund management.</td>
<td>Legal Challenges</td>
<td>Compliance with legal standards for AI use can be complex.</td>
</tr>
<tr>
<td>Decision Support</td>
<td>AI can assist policymakers with insights for decision-making regarding pension policies.</td>
<td>Misalignment with Goals</td>
<td>AI might prioritize efficiency over user-centric considerations.</td>
</tr>
</tbody>
</table>

Source: elaborated by authors.

The integration of artificial intelligence (AI) in Ukraine’s pension system offers both promising opportunities and potential challenges. On the positive side, AI can significantly reduce fraud by detecting patterns of fraudulent activities, ensuring fair distribution of pensions. Its precision in calculations can minimize errors, improving the system’s reliability. AI can also automate routine tasks, leading to
faster service and higher user satisfaction, while lowering operational costs through reduced manual processing. Furthermore, AI enables personalized pension plans tailored to individual circumstances, as well as enhanced data analysis for better investment strategies and resource allocation. Predictive modeling and improved reporting capabilities can aid in long-term planning and ensure system sustainability. AI can also support decision-making processes by providing valuable insights to policymakers.

However, the implementation of AI in the pension system is not without risks. Privacy concerns arise from the increased collection and processing of personal data, requiring robust security measures. Job displacement due to automation may have social and economic repercussions. Over-reliance on AI systems can create vulnerabilities, and the initial investment costs can be prohibitive. Ethical concerns, such as perpetuating biases, and potential data mismanagement must be addressed. Additionally, AI systems may be targets for cyberattacks, compromising sensitive pension data. Legal challenges related to AI usage and resistance to change can also hinder effective integration. By carefully considering these opportunities and threats, Ukraine can leverage AI to enhance its pension system’s efficiency, accuracy, and responsiveness while mitigating potential risks through appropriate strategies and safeguards.

Table 3 provides a structured overview of the possible benefits and drawbacks of integrating Ukraine’s pension system with the European Union, emphasizing the complex balance between adopting new practices and adapting to a broad and diverse regulatory environment.

The analysis of integrating Ukraine’s pension system with the European Union reveals both promising opportunities and formidable challenges. On one hand, European integration could provide significant benefits to Ukraine’s pension system. There is the potential for increased funding from EU sources allocated to bolstering social systems across member states. Additionally, Ukraine could adopt proven best practices from successful pension models already implemented by EU countries, leading to improved governance and efficiency. Worker mobility would also increase, allowing labor to move freely across borders while maintaining pension rights.
Table 3. Opportunities and Challenges of European Integration for Ukraine’s Pension System

<table>
<thead>
<tr>
<th>Opportunity</th>
<th>Description</th>
<th>Challenge</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhanced Funding Opportunities</td>
<td>Access to EU funds and grants could increase financial resources for pensions.</td>
<td>Funding Compliance</td>
<td>Aligning with EU standards might require complex reforms that are costly and time-consuming.</td>
</tr>
<tr>
<td>Improved Governance</td>
<td>Adoption of EU governance standards can enhance transparency and efficiency.</td>
<td>Increased Bureaucracy</td>
<td>Meeting EU regulations may introduce more administrative layers and complexity.</td>
</tr>
<tr>
<td>Technology and Innovation</td>
<td>Access to new technologies and systems used in the EU for managing pensions.</td>
<td>Technological Adaptation</td>
<td>Challenges in integrating and adapting to new technology platforms from the EU.</td>
</tr>
<tr>
<td>Best Practice Adoption</td>
<td>Learning and implementing best practices from EU countries with successful pension models.</td>
<td>4. Resistance to Change</td>
<td>Potential resistance from local institutions and citizens accustomed to the existing system.</td>
</tr>
<tr>
<td>Increased Mobility for Workers</td>
<td>Easier for workers to move and work across EU countries while securing pension rights.</td>
<td>Harmonization of Systems</td>
<td>Difficulties in harmonizing Ukraine's pension system with diverse EU systems.</td>
</tr>
<tr>
<td>Strengthened Economic Ties</td>
<td>Stronger economic relationships through integration can boost the overall economy, supporting the pension system.</td>
<td>Economic Dependencies</td>
<td>Potential over-reliance on EU economic health which can be risky if the EU faces a downturn.</td>
</tr>
<tr>
<td>Social Policy Improvements</td>
<td>Adoption of progressive EU social policies could lead to broader reforms in Ukraine's social systems.</td>
<td>Policy Alignment</td>
<td>The challenge of aligning national policies with broader EU social policies.</td>
</tr>
<tr>
<td>Risk Management</td>
<td>Better risk management practices from the EU could improve the sustainability of the pension fund.</td>
<td>Loss of Autonomy</td>
<td>Potential loss of control over national pension policy decisions.</td>
</tr>
<tr>
<td>Long-term Sustainability</td>
<td>Integration with EU could provide models and support for long-term sustainability of the pension system.</td>
<td>Short-term Disruption</td>
<td>Short-term disruption and uncertainty during the transition phase.</td>
</tr>
<tr>
<td>Increased Public Trust</td>
<td>Adoption of EU standards may increase public trust in the pension system.</td>
<td>Public Skepticism</td>
<td>Skepticism among the population about EU integration benefits and processes.</td>
</tr>
</tbody>
</table>

Source: elaborated by authors.

However, these opportunities are counterbalanced by considerable obstacles. Bringing Ukraine’s pension system into compliance with EU standards would require costly reforms across legal, financial, and administrative domains before any benefits could be realized. Implementing new technology platforms needed to modernize the system also represents a major investment of resources and training. Perhaps most
daunting is the challenge of harmonizing Ukraine’s unique pension system with the diverse systems already in place across EU member states.

The juxtaposition of opportunities and challenges demonstrates the precarious balance Ukraine must strike as it pursues EU integration of its pension system. While the potential advantages include enhanced funding, improved operations, and better mobility for workers, the risks involve significant financial costs, technological hurdles, and complex systemic harmonization. Ultimately, Ukraine must carefully weigh how to best leverage the opportunities while mitigating the formidable challenges. A prudent, phased approach to integration and compliance may be required to realize the rewards without being overwhelmed by the complexities involved.

Conclusions and prospects for further research in this area. The integration of artificial intelligence (AI) into Ukraine’s pension system offers significant value-added benefits. AI can automate processes, reduce administrative burdens, minimize errors, and facilitate personalized pension planning tailored to individuals' financial situations. This enhances user satisfaction and trust. AI is also valuable for detecting fraud and ensuring fair pension distribution.

In terms of policy implications, investments are needed in technological infrastructure, especially in rural areas, to enable widespread AI deployment. The government must foster an environment supportive of digitization and AI adoption while addressing data privacy concerns and regulatory gaps around data protection and ethical AI use to build public and institutional trust. Policy makers should explore international funding and partnerships with tech firms to offset high initial integration costs and enhance Ukraine's technological capabilities.

While AI integration offers clear benefits for efficiency, accuracy, and service personalization, challenges must be carefully managed. These include infrastructure deficits, regulatory gaps, and societal skepticism towards new technologies. A strategic, multi-pronged approach involving infrastructure upgrades, legal reforms, and public-private partnerships can maximize AI's benefits while minimizing risks. Ukraine must remain vigilant in monitoring technological changes and proactively adapting strategies to realize AI's full transformative potential for its pension system.

Future research should empirically investigate the long-term impacts of AI on
pension system efficiency and fairness. Studies on the socio-economic impacts like job displacement are also needed. Additionally, more focused research is required on developing culturally and linguistically tailored AI systems for Ukraine’s diverse population to ensure inclusivity and effectiveness.

Literature

2. Лебідь, О. В., Кіпоренко, С. С., Вовк, В. Ю. (2023). Використання технологій штучного інтелекту в сільському господарстві: європейський досвід та застосування в Україні. Електронне моделювання, Т. 45. № 3, с. 57-71. URL: https://doi.org/10.15407/emodel.45.03.057 (date of access: 10.02.2024).

6. Заярний, О. (2022). До питання удосконалення способів захисту інформаційних прав фізичних осіб у відносинах, пов’язаних із застосуванням технологій штучного інтелекту. Вісник Київського національного університету імені Тараса Шевченка, Вип. 1 (120), с. 36-39. URL: https://doi.org/10.17721/1728-2195/2022/1.120-7 (date of access: 10.02.2024).

15. Пархоменко-Куцевіл, О.І. (2023). Реформування системи пенсійного забезпечення: європейські практики та досвід для України. Наукові перспективи, № 1 (31), с. 149-159. URL: https://doi.org/10.52058/2708-7530-2023-1(31)-149-159 (date of access: 10.02.2024).
References

Стаття надійшла до редакції 02.05.2024 р.